Comparative study of shape, intensity and texture features and support vector machine for white blood cell classification

نویسندگان

  • Mehdi Habibzadeh
  • Adam Krzyżak
  • Thomas Fevens
چکیده

The complete blood count (CBC) is widely used test for counting and categorizing various peripheral particles in the blood. The main goal of the paper is to count and classify white blood cells (leukocytes) in microscopic images into five major categories using features such as shape, intensity and texture features. The first critical step of counting and classification procedure involves segmentation of individual cells in cytological images of thin blood smears. The quality of segmentation has significant impact on the cell type identification, but poor quality, noise, and/or low resolution images make segmentation less reliable. We analyze the performance of our system for three different sets of features and we determine that the best performance is achieved by wavelet features using the Dual-Tree Complex Wavelet Transform (DT-CWT) which is based on multi-resolution characteristics of the image. These features are combined with the Support Vector Machine (SVM) which classifies white blood cells into their five primary types. This approach was validated with experiments conducted on digital normal blood smear images with low resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine

Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...

متن کامل

Intelligent Diagnosis of Actinic Keratosis and Squamous Cell Carcinoma of the Skin, Using Linear and Nonlinear Features Based on Image Processing Techniques

Introduction: Most skin cancers are treatable in the early stages; thus, an early and rapid diagnosis can be very important to save patients’ lives. Today, with artificial intelligence, early detection of cancer in the initial stages is possible. Method: In this descriptive-analytical study, a computerized diagnostic system based on image processing techniques was presented, which is much more ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013